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and a Model Ferrofluid 

Jiirg Fr6hlich 1 and Dale A. Huckaby 2 

Received July 6, 1984; revised September 26, 1984 

A lattice gas on 23 consisting of hard spheres with exclusions extending through 
third neighbors is proved to undergo a percolation transition. If spins with 
ferromagnetic couplings are attached to the spheres, spontaneous magnetization 
is proved to occur. This may provide a model for a "ferrofluid," a system which 
exhibits spontaneous magnetization without crystalline order. Similar results are 
also obtained for an analogous model on Z 2. 
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1. I N T R O D U C T I O N  

Order-disorder phase transitions have been proved to exist in several hard 
core lattice gases. A proof of the presence or absence of a phase transition 
in a lattice gas of hard disks on Z 2 with first- and second-neighbor 
exclusions has, however, never been constructed. Configurations in this 
model at closest packing consist of every second row of sites being vacant, 
the other rows of sites containing disks. There are a large number of such 
configurations, for the rows of disks can "slide" with respect to one 
another. Consequently, this model has been difficult to treat by the Peierls 
argument. (1) Numerical calculations indicate the possibility of an 
order-disorder transition at very large activities, but the evidence is far 
from conclusive on this point. (2 5) 

A three-dimensional analog of the above model consists of a lattice gas 
of hard spheres on Z 3 with first-, second-, and third-neighbor exclusions. 
There are many configurations at closest packing in this model as well, for 
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in addition to the sliding of alternate rows of occupied sites within a plane, 
there is also the possibility of sliding alternate planes of occupied spheres. 

In Section 2 we study this hard sphere model on Z 3 from the point of 
view of percolation. (6,v) In particular, we use reflection positivity (1) to prove 
that infinite connected sets of occupied unit cubes exist in the system with 
probability one at sufficiently large activity and with probability zero at 
sufficiently small activity. This proves the existence of a percolation tran- 
sition in the model. 

We then consider a weaker notion of connectivity. (8'9) In this regard, 
we define an "aggregate" to be a set D in which every proper subset Do ~ D 
has the property that dist (Do, D\Do) <~ d(diam Do) ~, where d is some dis- 
tance and 6 <2.  We will show that at sufficiently low (high) activity, the 
probability a given cube in the model belongs to an aggregate of occupied 
(vacant) cubes decreases exponentially as the size of the aggregate 
increases. 

The percolation ideas we use for the model on 7/3 are also applicable 
for the analogous model on 7/2 . We give the corresponding results for the 
two-dimensional model at the end of Section 2. 

Infinite clusters of sites or cubes have been used in other models to 
prove the existence of ordered phases at sufficiently low temperatures. ~aw12) 
This has been a particularly useful technique for cases in which the ground 
state configurations are highly degenerate. We hasten to point out that we 
prove neither the presence nor the absence of an order-disorder transition 
in the present model. 

Since the present model may well be disordered at all activities, it 
provides a lattice gas model for a "ferrofluid," a system which possesses 
spontaneous magnetization but not crystalline order. In Section 3 we 
attach ferromagnetic spins to the spheres. We also introduce sphere-sphere 
attractions to provide for more realistic phase behavior. Using a "com- 
bination" of reflection positivity ~1'~3) and the standard Peierls 
argument, (~4-16) we prove that spontaneous magnetization occurs in the 
model at sufficiently low temperatures. The corresponding results for the 
analogous two-dimensional version of the model are given at the end of 
Section 3. 

2. PERCOLATION IN A LATTICE GAS OF H A R D  SPHERES 

Consider a simple cubic lattice A with cyclic boundaries given as 
A =  {(a, b, c): a, b, c = 0 ,  1 ..... 2 M -  1}. The coordinates (x, y,z) are com- 
puted modulo 2M onto 0 ~< x, y, z < 2M. 

We consider a lattice gas of hard spheres on A with exclusions 
extending through third neighbors. We let S i=  0 correspond to a vacancy 
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at site i6 A, and S~ = 1 correspond to site i being occupied by a sphere. A 
configuration is given as ~ e {0, 1 } IAI. The Hamiltonian for a configuration 

can be written as 

H(~)= --# ~ S~ (2.1) 
i 6 A  

We introduce a characteristic function on allowed configurations as 

)~(~) ---- H (1 -- SiSj) (2.2) 
(~) 

where the product is over all first-, second-, and third-neighbor pairs of 
sites. If C is the set of allowed configurations on A, then the grand 
canonical partition function for the system can be written as 

~ c  
(2.3) 

In an allowed configuration, at most one vertex of any unit cube in A can 
be occupied by a sphere. 

As is shown in Appendix A, reflection positivity (1) is satisfied for reflec- 
tions through planes of lattice sites which are perpendicular to one of the 
coordinate axes. A pair of such planes, P-+, divides A into two equal parts, 
A + and A , plus A ~  uP-)c~A. I f f  is any function of the con- 
figurations on A + w A ~ and Of is the reflection of f through the planes P+ 
(Of is thus a function of the configurations on A -  • A~ then reflection 
positivity is said to be satisfied if ( f0 f )>~0 .  If reflection positivity is 
satisfied, then it follows by a standard CauchYTSchwartz argument that 
[(fg)[2 <~ (fOf)(~Og), where f is any function of the configurations on 
A + w A ~ and g is any function of the configurations on A - w A ~ 

This latter inequality is useful for obtaining bounds to several quan- 
tities of interest. In particular, let Pr,o(PL,~) be the probability that a set L 
of unit cubes in A are all occupied by spheres (all vacant). In Appendix B, 
reflection positivity is used to show that 

PL.o ~< zrLI/8, Pr, v ~< z-ILj/8 (2.4) 

where z = exp(#/kT) is the activity. We shall use these bounds to prove the 
existence of a percolation transition in the model. 

We first give a definition of a rather weak type of connectivity. (8'9) 
(The notions and results between Definition 2.1 and Theorem 2.3 are more 
general than what will be needed, later, in this paper. However, we feel they 
are sufficiently interesting in this context to be briefly recalled.) 
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Defini t ion 2.1. D ~ 7/~ is (6, d)-connected if VDo c D, 

~'d(diam Do) 6, if IDol > 1 
dist(Do, D\Do) <~ [d, if IDol = i 

We now proceed to obtain a useful bound on the number of (6, d)- 
connected sets, 6 < 2, which contain the origin and fewer than m other sites 
of Z ~. The following notion ~9) of the volume, V(D), of a set D will prove 
helpful for obtaining such a bound. If C,(D) is a minimal family of 
cubes which covers D, each cube having edges of length 2 ", then 
V(D) =-~o IC,,(D)I, where no is the smallest integer for which IC~0(D)I-- 1. 
We also define (9) the volume, V'(D), of "isolated points" as V'_=~0 IC'ol, 
where C',(~, M) = {c: c e C,,  dist (c, c') >i M2 ~ re '  e C,\c}.  Here 1 ~< ~ < 2 
and M <  oo. 

Lemma 2.2. If D is (6, d)-connected and 6 < 2 ,  3K(6, d)< 
~ V(D) ~ K(6, d) Vo(Z~). 

Proof. By Theorem 4.4 of Ref. 9, VM > 0, 1 < c< < 2, 
V(D) <~ Ko(~, M) Vo(D) + K'(~, M) V'(D). Pick any M > d and 
2 > u > m a x ( 1 , 6 ) .  If V'(D):~O, then 3n~>0~ C',(D)r =~3D0 C 
D ~ M2 ~n ~< dist(D 0, D\Do) ~< d2 ha, a contradiction. ] 

Theorem 2.3. If 6 < 2 ,  3Kv(6, d ) < ~  ~ N(6, m ) = # { D : D  is 
(6, d)-connected, 0 e D, tD[ <~ m} <<, e Kv(6'd)m. 

Proof. By Theorem 4.2 of Ref. 9, # { D : D  is (6, d)-connected, 
0~D,  V(D)= V}<~e Kvv. => # { D : D  is (6, d) connected, 0 e D ,  
V(D)~m}~C~e Kvm for some Cv>0.  From Lemma2.2,  if I D [ -  = 
Vo(D) <<. m, then V(D) <. K(6, d)m if 6 < 2. =~ N(6, m) <~ # {D: D is (3, d)- 
connected, 0 e D, V(D) <<. K(6, d)m} <~ C~e K~K(6'dlm if 6 < 2. ] 

We show in Appendix C that Theorem 2.3 is false for all d>~ 1 if 6 >~ 2. 
(3, d)-connected sets, 6 < 2, thus provide a useful new notion of connec- 
tivity. We now give some physical meaning to such sets. 

A "molecule" is a (0, d)-connected set of atoms, where d is the longest 
bond length in the molecule. For ~ < 2, we shall call a (3, d)-connected set 
an "aggregate." From Theorem 2.3, the logarithm of the number of 
(6, d)-connected aggregates, containing the origin and a number of 
elements not exceeding m, is proportional to m. This logarithm is related to 
the entropy of the aggregate. 

We shall now apply Theorem 2.3 to the hard sphere lattice gas. Con- 
sider a unit cube C~ with center at r. Let A' = Z 3 be the lattice of cube mid- 
points. Two cubes are said to be connected by an edge if their midpoints 
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are separated by a distance d ~< x/2. A set L of cubes is said to be a "con- 

nected cluster" if there exists a walk, having step length ~< xf2, on mid- 
points of cubes in L which connects the midpoints of any two cubes in L. 

By Definition 2.1, a connected cluster of cubes is also a (0, x~)-connected 
subset of 2 3 . 

From Theorem 2.3, the number, NL, of connected clusters, each con- 
taining ~< ILl cubes (including the cube with center at 0 cA') ,  is bounded 

as NL~<exp(ILI K3(0, ~ ) ) ~ K  ILl/8. Then from Eq. 2.4, the probability 
that the origin belongs to a connected cluster of ILl vacant cubes is less 
than (K/z) ILI/8. 

In particular, the probability is zero that the origin belongs to an 
infinite connected cluster (]L[ ~ )  of vacant cubes if z > K .  By trans- 
lational invariance, it follows that the probability is zero that an infinite 
connected cluster of vacant cubes is anywhere in Z 3 if z > K. 

Similarly, from Theorem 2.3 and Eq. 2.4, the probability is zero that 
there is an infinite connected cluster of occupied cubes in the system if 
z < K  -1. 

More precisely, our estimates (2.4) and Theorem 2.3 permit us to 
show that if z > K the probability that there exists a connected cluster of n 
vacant cubes containing a given point is bounded above by e -c(~l", for 
some constant C(z) (tending to +oo as z - - , ~ ) ,  and if z < K  -1 the 
probability that there exists a connected cluster of n occupied cubes con- 
taining a given point is bounded above by e -c(~-~)'. Thus, we see, using a 
standard Peierls estimate, that there exists a constant K'>~ K, such that the 
probability is one that the system contains an infinite cluster of occupied 
cubes if z >  K', and the probability is one that the system contains an 
infinite cluster of vacant cubes if z < K ' -  1. Therefore, there is a percolation 
transition of vacant cubes at Zc, v ~ (K'-1,  K') and a percolation transition of 
occupied cubes at zc,0 e (K' 1, K'). Since every configuration is expected to 
contain either an infinite cluster of vacant cubes or an infinite cluster of 
occupied cubes, then Zc.o ~< zc,~- 

An argument, completely analogous to that given above, can be con- 
structed to prove the existence of a percolation transition in the analogous 
two-dimensional model, the lattice gas of hard disks on Z 2 with exclusions 
extending through 2 nd neighbors. For this model, there exists a constant 

K"~>exp(4K2(0,,,~), such that the probability is zero (one) that the 
system contains an infinite connected cluster of vacant (occupied) unit 
squares if z > K". Likewise, the probability is zero (one) that the system 
contains an infinite connected cluster of occupied (vacant) unit squares if 
z < K" - 1. 

We can also obtain bounds on the number of finite aggregates of all 
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occupied or all vacant cubes which contain the origin (or any other 
specified site). From Theorem 2.3 and Eq. 2.4, the probability the origin is 
a member of a (6, d)-connected aggregate of ILt occupied cubes is less than 
(exp(K3(6, d))zl/S) ILt, which decreases exponentially with increasing ILl if 
z < e x p ( -  8K3(6, d)). Likewise, the probability the origin is a member of a 
(6, d)-connected aggregate of ILl vacant cubes is less than 
(exp(K3(6, d))z 1/~)ILI, which decreases exponentially with increasing IL[ if 
z > exp(8K3(6, d)). Analogous bounds are also easily obtained for the two- 
dimensional analog of this model. 

Whether or not the two- or three-dimensional model has an 
order-disorder transition, in addition to the percolation transition, is not 
known. There is some numerical evidence for such a transition in two 
dimensions, but the results are inconclusive on this point. (2-5) In fact, the 
numerical evidence can be interpreted to imply that the system is dis- 
ordered at all finite activities. (4'5) 

The possibility that these hard-core systems may lack long range order 
at all finite activities makes these models attractive as a possible starting 
point for constructing a model ferrofluid. A ferrofluid is a system which 
exhibits spontaneous magnetization at low temperatures without 
long-range translational ordering. If ferromagnetic spins are attached to the 
spheres or disks of the above models, perhaps the resulting systems will 
exhibit ferrofluid-like behavior. We address this interesting possibility in 
Section 3. 

3, A M O D E L  FERROFLUID 

We now add ferromagnetic spins to the hard spheres of the lattice gas 
model on A discussed in Section 2. In addition, we allow for the possibility 
of van der Waals attractions between the spheres. If we let S i=  +1 
represent a sphere at site i e A with a + spin attached, and let Si = 0 
represent a vacancy at site i, then the Hamiltonian for the model can be 
written as 

m ( ~ )  = -- 2 J i d g i s j  - ~ ~iJ 8232 - ~ Z 32 (3.1) 
(ij) (ij) iEA 

where ~ { - 1 ,  O, 1} IAL, J~j>O, and ~ij>~O. The characteristic function, 
Z(~), on allowed configurations of hard spheres is given as 

Z(~) = H (1 2 2 -sis)) (3.2) 
(0) 

where i and j are first-, second-, or third-neighbor pairs of sites. The grand 
canonical partition function is of the same form as given in Eq. (2.3). 
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Models having the Hamiltonian of Eq. (3.1), but not the specific 
hard-core repulsion we consider, have been considered by other authors 
within the framework of the mean field approximation. (~7'1s) 

In order to model a ferrofluid, we wish to allow configurations con- 
taining a maximum number of spheres to have a highly degenerate ground 
state. That is, we wish to choose {Jij} and {~ij} so that the energy of a 
ground state configuration, containing the maximum number of spheres, is 
unaffected by the sliding of rows of occupied spheres. This can be accom- 
plished by choosing the couplings as follows: 

( J i j ,  ~ij) = 

(4J, 4e) if i, j fourth neighbors 

(2J, 2e) if i, j fifth neighbors 

(J, ~) if i, j sixth neighbors 

(0, 0) otherwise 

(3.3) 

The location of fourth, fifth, and sixth neighbors is illustrated in Fig. 1. 
At absolute zero, if # > - 1 2 ( J +  e), the ground states of the system 

contain the maximum number of spheres, all with aligned spins. There are 
a large number of such configurations, for the energy is invariant with 
respect to the sliding of occupied rows of spheres. 

It is unclear whether or not the system has long-range translational 
order as the temperature is increased above zero. Energetically, a pair of 
vacancy defects will favor residing on a pair of fourth-neighbor sites. 
Whether or not such an energetic ordering tendency is overcome by 
entropy considerations is difficult to ascertain. It is quite possible, however, 
that the system is noncrystalline at low temperatures. 

/ 
6 

sj 

Fig. l. Two unit cubes of A are illustrated. Pictured are a square, sj, and its reflection, Osj, 
through the plane containing the common  face of the two unit cubes. Also pictured are exam- 
ples of fourth-, fifth-, and sixth-neighbor sites to a site i. 
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We shall now prove that spontaneous magnetization occurs in the 
model at sufficiently low temperature if the chemical potential is sufficiently 
large. Let S~ be the sum of the spins at the vertices of a unit cube with 
center at i e A'. Clearly, S~ = 0 if the cube is vacant, and S~ = _+ 1 if the 
cube is occupied by a sphere with a _ spin. There is spontaneous magne- 
tization in the model if there exists a constant c > 0, independent of i and j, 
such that (S;Sj)>~c. Let Ps;s ~ be the probability that the sum of the 
spins on the cube at i is S; an~i on the cube at j is S). (A dot will indicate 
the spin is unspecified.) Since (S~Sj) = 2(p +,+ - p + _  ) and 
2(p+,+ + p + _  + Po,-)-  Po,0 = 1, then there is spontaneous magnetization 
in the model if there exists a constant c' < 1, independent of i and j, such 
that 4p + _  + 2p0 ,. ~< c'. 

In Appendix A we prove that the model satisfies reflection positivity r 
with respect to reflection through planes of lattice sites which are perpen- 
dicular to one of the coordinate axes. Using reflection positivity, we show 

/ i n  Appendix B that the probability PL,, that a specified set, L, of cubes are 
all vacant is bounded as 

P c , o < e x p ( - e o  ILI/kT), where eo=3e/2+3J/2+p/8 

As a consequence, Po,. = PI,~ < exp( -eo /kT) .  
We now use the Peierls argument (14-t6) to obtain a bound on p+,_ .  If 

S~ = +1 and Sj = - 1 ,  then either the cube centered at i or the cube cen- 
tered a t j  is surrounded by an edge connected set of cubes (a contour), each 
cube of the contour being either vacant or occupied by a sphere with a spin 
opposite to the spin on cubes which are interior to the contour. Clearly, 
spins exterior to the contour do not interact with spins which are interior 
to the contour. 

The probability P~ that a contour 7 occurs in a configuration is given 
a s  

P~/=Z -1 ~, Z(~)e ,(~)/kr (3.4) 

Let C~= { ~ : T c ~ e C } ,  and let C * =  {~*}, where {* is the configuration 
obtained from ~ ~ C by flipping all spins in ~ which are interior to 7. If No 
is the number of occupied cubes in the contour 7, then 

o - -  2JNo/kT ( 3 . 5 )  P7 < . e - - H ( { * ) / k T  "~ 

If Nv is the number of vacant cubes in ?, then the reflection positivity 
estimate gives P~ <exp(-eoN~/kT). Since No + Nv = I~1, then either No or 
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N v must be as large as 171/2. Hence P~<exp(-c~rTI/kT), where 
= min{J, eo/2 }. 

The standard Peierls argument then gives 

p+, < a ~ 1~/13/2(be-:~/kr) I'H (3.6) 

where a and b are positive constants. If # > - 1 2 ( J + e ) ,  then ~>0 .  
Therefore, there is spontaneous magnetization in the model at sufficiently 
low temperature if # > - 1 2 ( J +  e). 

In the corresponding model on 2 2 , the hard core exclusions extend 
only through first and second neighbors, and the other interactions are 
given as 

(Jij, ei,/) = 

(2J, 2a) if i, j third neighbors 

(J, e) if i, j fourth neighbors 

(0, O) otherwise 

(3.7) 

where J > 0 and e >~ 0. A Peierls argument, completely analogous to the one 
given above, proves the existence of spontaneous magnetization in the 
model at sufficiently low temperatures provided # > - 4 ( J +  e). 
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APPENDIX A: REFLECTION POSITIVITY 

Consider a simple cubic lattice A with cyclic boundaries given as 
A = {(a, b, c): a, b, c = 0 ,  1 ..... 2 M -  1}. The coordinates (x, y, z) are com- 
puted modulo 2M onto 0 ~< x, y, z < 2M. 

We consider a lattice gas on A with the Hamiltonian defined by 
Eq. (3.1), together with the 'characteristic function given by Eq. (3.2). 

We define reflection planes P f  for 0 ~< a ~< M -  1 as 
P2 = { (a, y, z): y, z s ~ } and P~ = P2+ M. Similarly, we define reflection 
planes P{ and P f .  The planes P f  divide A into three disjoint regions: 

A~+=Ac~{(x, y , z ) : M + a < x < 2 M + a ,  y, z e E }  

A y = A c ~ { ( x , y , z ) : a < x < M + a ,  y, z e E }  

A~ A c~(P2 u P~ + ) 
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There is a natural involution 0a: (x, y, z ) ~  ( 2 a -  x, y, z) which reflects the 
coordinates through the reflection planes P+. If C + is the set of con- 
figurations on A + (and similarly for C 2 and C~ then OaC~ = C + and 

O__ 0 0a C , -  C a, the latter being invariant. 
For  any function f :  C ~  C, we define Oaf as (Oaf)(4) = f(0a(4)). We 

denote 4 as a triple ~ = (42, ~o, 4a +), where 4 + e C + and o o 4ae Ca. Let F + = 
{f: f ( ~ ) = f ( 4  ~ ~+) V4 = {Si} }. Then Oaf(4 ) = f(~0, 4 2 ) i f f  e F+. We also 
define a set of functions F;- in an analogous fashion. 

Let sj, a denote a unit square in A~ + which is parallel to and neighbor- 
ing P2 or P2. One such square is illustrated in Fig. 1. The Hamiltonian 
can then be written as 

g(4) = g + (4) + Oa H+ (4) 

- -  2 ( g j T a ( 4 )  Oa gi+~(4) + hj+~(4)Oahs+o(~) ) (A1) 
sj, a 

where &+a = x/-) Zi~ ss. S~ and h ? = ~ Z~sj, o $2. As such, H +, gs, +, and h + , , J,a ],a 
are all elements of F +. Moreover, )(~(~)= ~+(~)0~)~+(4), where )(+ ~ F  +. 
(Note that each fourth-neighbor interaction occurs four times in the sum, 
each fifth-neighbor interaction occurs twice, and each sixth-neighbor 
interaction occurs once.) 

If f e F +, then 

~ f ( 4 )  O~f(r = Z Z f(4) Z O~f(4) >~ 0 
r r176 r r 

since it is a sum of squares. We can expand exp[ -H(~) /kT]  in a con- 
vergent power series with terms of the form c~f0af, where f e  F~ + and c~ > 0. 
[The minus sign in H(4) before the sum over sj, a is crucial to insure 
e > 0. (~3)] Hence, for a n y f e  F 2, @ ~ f >  ~> 0, which is the condition known 
as reflection positivity. 

A similar argument can be used to show that the two-dimensional 
analog of this model is reflection positive about lines of lattice sites which 
are perpendicular to a coordinate axis. The model on 7/2 has a Hamiltonian 
defined by Eqs. (3.1) and (3.7), together with a characteristic function to 
account for the hard core exclusion of first and second neighbors. For this 
model, s s in Eq. (A.1) will represent an edge of a unit square which borders 
the reflection line. 

The case in which the only interaction is the hard core repulsion is 
more easily treated. In this case, H ( ~ ) = - g X ~ &  where S~e {0, 1} and 

e {0, 1 }IAI. Then H(4) = g~+ (4) + O~H~+(4) and )((4) = Z+(~) 0ag2 (~). The 
argument given above then yields <fO~f> >1 0 iffeF+~. 

For all the models, it follows by a standard Cauchy-Schwartz proof 
that [<fg>[2~ <fOaf><gOag > Vf  eF2 ,  gEF2.  
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APPENDIX B 

Here we shall use reflection positivity to obtain upper bounds to the 
probability a set of unit cubes are all vacant or all occupied. Let Cr be the 
unit cube with center at r. Let Qr be the projection onto configurations in 
which C,. is vacant; that is, 

{g if C,.(~) is vacant 

Q'(~) = otherwise 

Let L be a (nonempty) set of cubes. Define 

Q(L) = 1-[ Qr(~) 
r ~ L  

The probability PL,~ that L is a set of vacant cubes is then bounded as 
PL,~= (Q(L) ) <~ gill, where 

g =  max (Q(L)) 1~ILl 
L 

Since Q(L)=Q+(L)Q (L), where Q+ e F + and Q ~F a, then (see 
Appendix A), ( Q ) 2 <  (Q+O,Q+)(Q-O,Q ). IfLm maximizes (Q)I/ILI, 
then it also maximizes (Q+OaQ + )l/IL( Hence if r~Lm, then OarEL m as 
well. But since this is true for 0 defined as a reflection through any pair of 
planes P+,  P~,  P~+, then L,, contains all the [AI = 8M 3 cubes in A and 
corresponds to the completely vacant configuration. Hence 

Therefore, g ~< exp(-PA/kT) ,  where PA = [A[-1 kTln ~. 
A weaker but somewhat more useful bound on g is obtained by noting 

that Z>exp(eo[Ar/kT), where -e0[A[ = -(3e/2 + 3J/2 +p/8)lA[ is the 
value of the Hamiltonian corresponding to an allowed configuration in 
which every cube is occupied and all the spins are aligned. Therefore, 
PL,v < exp(-- eo [L[/kT). 

A similar argument can be used to bound the probability PL,o that a 
set L of cubes are all occupied by spheres. In this case, where [A[ = 8M 3, 

g < (.6(2M + I)~ e~~ 1/8M3 

Here -8olA[ is the minimum value of the Hamiltonian for configurations 
in which every cube is occupied. Simple packing considerations indicate 
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that 6(2 64+ 1)~t is the maximum number of configurations in which every 
cube is occupied. In the thermodynamic limit, I A I --+ c~, 
PL.0 < exp(eolLI/kT). 

For the two-dimensional model, an analogous argument can be used 
to obtain an upper bound to the probability that a set of ILl unit squares 
are all occupied by disks or that they are all vacant. The bounds are of the 
same form as those given above, the only difference being that 
go = J +  ~ + #/4 for the two-dimensional model. 

If the only interaction in the model is hard core repulsion, bounds for 
PL,~ and PL,o can be obtained from the bounds given above by setting 
J = e = 0 .  In three dimensions, PL.~<z -ILu8 and PL.o<Z ILuS, where 
z = exp(#/kT). In two dimensions, PL,~ < z-lLI/4 and PL,o < zlLI/4. 

APPENDIX  C 

By counterexample we now show that Theorem 2.3 is false for all 
d~> 1, if 6 >~ 2. Note that sets which are (6, d)-connected are also (6', d')- 
connected for all d' >j d, 6'/> 6. 

Consider the set So= {0, 1, 2 ..... p}, where p>~2. Define recursively 
Si = {Si 1, T J & - I } ,  1 <<.i<~j, where T~ 'x -x  +a. Sets So, $1, and $2 are 
illustrated in Fig. 2 for the case p = 2 and 6 = 2. Form new sets Sj from Sj 
by translating the outer set (one with larger coordinates) of each neighbor- 
ing pair of sets Si, 0 <~ i<j ,  from 1 to pa, sites away from the neighboring S~ 
set. The sets S) so formed each contain (p + 1) U elements, including the 
origin. Moreover, since 6/> 2 and p >~ 2, each set S~ finally formed from a 
set Si has diam(S~) ~> pa' and 1 ~< dist (S~, S~\S~) <~ p~,+l. Hence the sets S) 
are (6, d)-connected Vd~> 1. 

Since there are 2 j -  i-  1 pairs of S~ sets, then the number of sets Sj is 

j 1 

H (P ai)2J-i l>/P 2j-lj 
i = 0  

If p2J-~j <~ eX,~a,a~{p+ 1)2J, then Kv(a, d) >~j(ln p)/(2p + 2), which increases 
without bound as j increases. 

Q O  �9 O Q  �9 

S 1 

8 2 

O Q O  Q O O  

Fig. 2. Sets So, S~, and  8 2 a r e  i l lus t ra ted  for the case p = 2 and  6 = 2. 
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